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Abstract. A spin-orbital chain with different Landé g factors and one-ion anisotropy is studied in the
context of the thermodynamical Bethe ansatz. It is found that there exists a magnetization plateau resulting
from the different Landé g factors. Detailed phase diagram in the presence of an external magnetic field is
presented both numerically and analytically. For some values of the anisotropy, the four-component system
undergoes five consecutive quantum phase transitions when the magnetic field varies. We also study the
magnetization in various cases, especially its behaviors in the vicinity of the critical points. For the SU(4)
spin-orbital model, explicit analytical expressions for the critical fields are derived, with excellent accuracy
compared with numerics.

PACS. 75.30.Kz Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) –
71.27.+a Strongly correlated electron systems; heavy fermions – 75.10.Jm Quantized spin models

1 Introduction

Orbital degeneracy in electron systems leads to rich and
novel magnetic phenomena in many transitional metal ox-
ides [1]. Among them are the orbital ordering and orbital
density wave, which have been observed experimentally in
a family of manganites [2]. A tractable model to describe
2-fold orbital degenerate system is the SU(4) model [3],
which has attracted much attention [3–10]. In the one-
dimensional case the model is exactly solvable by Bethe
ansatz (BA) [5,11]. An interesting question is to study the
critical behavior of such a system in an external magnetic
field, especially when different Landé g factors for spin
and orbital sectors are involved. One may expect that
the difference of g factors will bring about new physics
as a result of the competition of the spin and orbital de-
grees of freedom. In reference [9], the authors studied the
magnetic properties of the SU(4) model via BA, with-
out taking different g factors into account, whereas nu-
merical calculation was performed in reference [10] for
the model with different g factors for up to 200 lattice
sites. However, a full picture about the critical fields is
still lacking. Another motivation is to see whether or not
any magnetization plateau (MP), an interesting magnetic
phenomenon, occurs in such a spin-orbital model. As is
well-known, antiferromagnetic chains with integer spin are
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gapful [12], whereas for half-integer spin there also exists a
gapful phase with a MP in the presence of a large planar
anisotropy [13]. Also fractional MP have been observed
and can be explained by Shastry-Sutherland lattice [14].
But an MP arising from different Landé g factors has not
been addressed yet.

Deviation from the SU(4) symmetry can be caused
by variation in the interaction parameters of neighbor
sites [4,6,8,15], while another possible deviation may re-
sult from the one-ion interaction. Since many compounds
are magnetically anisotropic in which the orbital angular
momentum (OAM) may be constrained in some direction
due to crystalline field, the angle between spin and OAM
determines the spin-orbital coupling (SOC) energy. This
kind of one-ion SOC leads to magnetic anisotropy [16].
Under the influence of molecular field and an external
field, the spin is parallel to the OAM. In such a case,
sz

i τ
z
i type of interaction describes well the SOC energy.

Another possibility of such an interaction can be found
when τi is pseudospin. In fact, some realizations of the
SU(4) spin-orbital model were presented from tetrahis
(dimethylamino) ethylene(TDAE)-C60 [15] and semicon-
ducting quantum dot array [17] involving two orbitals
lz = 1,−1, while the lz = 0 orbital is excluded due to
a higher crystal field energy in TDAE-C60 or filled in the
quantum dots due to lower energy in harmonic-oscillator
potential. If the SOC is taken into account, we will have
the anisotropy sz

i τ
z
i by an effective relation l · s = 2τzsz ,
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since the lz = 0 orbital is excluded and the transition
caused by l± in the SOC is prohibited. Here we shall in-
troduce such an SU(2)⊗SU(2) SOC interaction into the
SU(4) model. A detailed investigation of the phase dia-
gram is undertaken both numerically and analytically in
the context of the thermodynamical Bethe ansatz (TBA).
We find that the system exhibits an MP resulting from dif-
ferent g factors when the SOC is sufficiently strong. The
critical behavior of the magnetization in the vicinities of
the critical points is revealed. For certain values of Landé
g factor, the model undergoes five consecutive quantum
phase transitions when the external magnetic field varies.
Further, the explicit analytic expressions for the critical
fields for the SU(4) model are derived, with excellent ac-
curacy compared to numerical results.

2 The model and TBA

We shall consider an L-site chain with the Hamiltonian

H = H0 + Hz + M, H0 =
∑
i=1

Pi,i+1,

Hz = ∆z

∑
i

sz
i τ

z
i , M = −gsH

∑
i

sz
i − gtH

∑
i

τz
i , (1)

where s and τ are spin-1/2 operators for spin and or-
bital sectors. The gs denotes the Landé g factor in z-
direction for spin sector and the orbital g factor gt de-
pends on the orbitals the system involves. For example,
gt = 0 in z-direction if only eg orbitals involve and t2g

orbitals are already occupied [1], since the field energy is
zero for the orbital dx2−y2 while it is prohibited for the
transition induced by the field from the orbital d3z2−r2 to
the occupied dxy; for lz = ±1 orbitals [15,17] gt is the
real orbital g factor in z-direction multiplied by 2. We
shall discuss generally and assume gs > gt throughout the
paper, the results for gs < gt are similar when the spin
and orbital sectors are exchanged. H0 is the SU(4) model
with Pi,j = (2si · sj + 1/2) (2τ i · τ j + 1/2) exchanging
the four site states |sz

i τ
z
i 〉: φ1 = |↑↓〉, φ2 = |↓↑〉 , φ3 = |↑↑〉,

φ4 = |↓↓〉. It should be noted that electrons have posi-
tive ∆z whereas holes have negative ∆z according to their
SOC [18]. The symmetry is broken into SU(2)⊗SU(2) by
Hz and further into four U(1)’s by the external magnetic
field H . The model can be solved exactly via BA approach.
The BA equations are the same as the SU(4) model [5,11]
under the periodic boundary conditions, with the energy
eigenvalues given by

E = −2π

M(1)∑
i=1

a1(λi) +
4∑

k=1

EkNk, (2)

where an (λ) = 1/(2π) n/(λ2 + n2/4), and
E1 = −∆z/4 − g−H/2, E2 = −∆z/4 + g−H/2,
E3 = ∆z/4 − g+H/2, E4 = ∆z/4 + g+H/2, with
g± = gs ± gt. Nk is the total site number in state φk and
M (i) (i = 1, 2, 3) is the rapidity number. For a certain
choice of the basis order, which depends on whether or not

the component is energetically favorable, the energy can
be rewritten as E =

∑M(1)

i=1 g(1)(λi)+g(2)M (2) +g(3)M (3).
Following references [19,20], one may obtain the
ground state (GS) equations for the dressed energies
ε(i) (i = 1, 2, 3),

ε(i) = g(i) − a2 ∗ ε(i)− + a1 ∗
(
ε(i−1)− + ε(i+1)−

)
, (3)

where ε(0) = ε(4) = 0 and the symbol ∗ denotes the con-
volution. The GS is composed of Fermi seas filled by neg-
ative dressed energies ε(i)−. According to an energetics
argument, we may divide the external field H into three
regions: (I) 0 ≤ H < HR1, (II) HR1 < H < HR2,
(III) HR2 < H < ∞ with HR1 = |∆z | /(2gs), HR2 =
|∆z| /(2gt). For ∆z > 0, the corresponding basis order
are: (I+) (φ1, φ2, φ3, φ4)T , (II+) (φ1, φ3, φ2, φ4)T , (III)
(φ3, φ1, φ2, φ4)T ; for ∆z < 0: (I−) (φ3, φ4, φ1, φ2)T , (II−)
(φ3, φ1, φ4, φ2)T , (III) the same as ∆z > 0. These five ba-
sis orders provide a full description of the phase diagram
of the system.

3 Magnetization plateau

The competition between the anisotropy parameter ∆z

and the magnetic field H results in a novel quantum
phase diagram. In the absence of the magnetic field, it
is easy to find that the states φ3 and φ4 are gapful for
∆z > ∆c

z = 4 ln 2. Whereas for ∆z < −∆c
z, the compo-

nents φ1 and φ2 are gapful. Therefore, the GS is in an
su(2) spin-orbital liquid state in strong anisotropy regime
in the absence of the field. However, the presence of the
magnetic field completely splits all four components ener-
getically. The magnetization Mz = gss

z + gtτ
z increases

from zero. For large positive ∆z, the field bring the com-
ponent φ3 closer to the GS, while the component φ2 grad-
ually gets out of the GS. Certainly, if the field reaches
the first critical field where the component φ3 has not
yet involved in the GS, a quantum phase transition from
the spin-orbital liquid phase to a ferromagnetic phase oc-
curs. Thus a magnetization plateau opens with a constant
magnetization Mz = g−/2. Nevertheless, this plateau will
end when the field is strong enough H > Hp

c2, the com-
ponent φ3 becomes involved in the GS. The critical field
Hp

c2 indicates a quantum phase transition from the ferro-
magnetic GS into a spin-orbital liquid phase. If the field
continues to increase, the spin and orbital sectors become
fully-polarized at the third critical point Hp

c3. From the
TBA equations (3), we get the exact expressions for the
critical fields

Hp
c1 =

4
g−

, Hp
c2 =

∆z/2 − 4
gt

, Hp
c3 =

∆z/2 + 4
gt

. (4)

Notice that the plateau opens only if ∆z > ∆P
z = 8gs/g−

and 0 < gt < gs. If the g factors are the same, the plateau
disappears because the components φ1 and φ2 remain de-
generate in the field. The critical behavior of the mag-
netization in the vicinities of the critical points may be



Zu-Jian Ying et al.: Magnetization plateau and quantum phase transitions in a spin-orbital model 537

0 1 2 3 4 5
Magnetic field  H

0

0.5

1

1.5
a b c d e f g

h

i

j

0 2 4
0

0.5

1

1.5

M
ag

ne
tiz

at
io

n 
 M

z

0.65 0.7 0.75
0.6

0.8

1

1.2

0 0.5 1 1.5
0

0.5

1

1.5

2

M
z

H H

(A)

(B) (C)

Hc1

Hc2

Hc3

Hc4

Hc5

Hc2

Hc3

Hc4

34
341

31 3

312

314

31
3123142,

3124

(−3.5) (−∆c
z ) (−1.6) (0.0) (1.0)) (∆c

z

(5.0)

(7.0)

(17)

(<∆F
z

M
z

)

Fig. 1. (A) Typical magnetization behaviors for fixed values of
Landé g factors gs = 2.0 and gt = 1.0. The numbers in brackets
indicates values of the anisotropy parameter ∆z. The dotted
line e denotes the magnetization for the SU(4) model. Curve j
exhibits a magnetization plateau. (B) Magnetization corre-
sponding to five consecutive five Hc quantum phase transitions
for gs = 2.0, gt = 1.9, and ∆z = −3.0. Here the variation of
the state component numbers is 2→3→4→3→2→1. The num-
ber i labels the state φi, e.g., the state components in the phase
123 are φ1φ2φ3 in which φ1 is energetically the most favorable
whereas φ3 is the least favorable. The phase variations between
Hc2 and Hc3 are 3412→3142→3124. The dotted line for com-
parison is an extension of the phase 34 by assuming the com-
ponents unchanged. (C) Magnetization for consecutive five Hc

phase transitions for gs = 2.0 and gt = 1.0, with ∆z = −1.4.
Hc1 = 0.531 (transition 3142→214) and Hc5 = 3.33 (31→3)
are relatively far away. The variation of the component num-
bers in the phase transitions is 4→3→4→3→2→1.

summarized as follows

〈Mz〉 ∼= 〈Mz〉c + ηkMδH
1
2 , (5)

where 〈Mz〉c = g∓/2 are, respectively, plateau and satu-
ration magnetizations. δH is the small deviation from the
critical points and η = ±1 depending on Mz is increasing
or decreasing. kM = g

3/2
− /π near Hp

c1 and kM = g
3/2
t /π

near Hp
c2 and Hp

c3. The coefficients g− and gt in (4) and
(5) can be easily understood, since only φ1 and φ2 exist in
the GS before Hp

c1 is reached, the differences of their field
energy and magnetization are g−H and g− respectively.
While for Hp

c2 < H < Hp
c3, only φ1 and φ3 compete in the

GS, since φ2 already gets out before φ3 enters the GS. φ1

and φ3 differ in field energy by gtH and in magnetization
by gt. In Figure 1A we plot the magnetization curves for
different values of ∆z under some fixed values of the g
factors, the corresponding quantum phase transitions can
be easily understood from the phase diagram presented in
the next section. Among these curves is included a plateau
case, other values of gs and gt give similar plateaux with
the plateau magnetization located in g−/2.
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Fig. 2. Phase diagram for fixed values of Landé g factors
gs = 2.0 and gt = 1.0. Inside C+QC−, the 4-state phases are
1234 (I+), 1324 (II+), 3124 (III), 3142 (II−), and 3412 (I−),
with the energy Ei < Ej < Ek < El corresponding to an order
ijkl in the respective sector (I±, II±, III). The discrepancy of
the analytic curves from the numerical ones is not visible for
most regions of C+PQ and C+MNQ (with typical differences
within 1.0%, and 0.1%, respectively). There is less accuracy in
regions I− and II− for the analytic results due to smaller Fermi
boundaries. Magnetization plateaux and fully-polarized cases
are exact.

4 The phase diagram: numerical
and analytical

Here we present a detailed analysis of the GS phase dia-
gram both numerically and analytically. In Figure 2, we
plot the phase diagram with respect to ∆z and H for fixed
values of gs and gt (gs = 2.0 and gt = 1.0), phase diagrams
for other values of g factors are presented in Figure 3B.
For convenience, we refer to the GS with i components as
i-state GS. Then for the phase transition between 3-state
and 2-state GS, the critical fields follow from the Wiener-
Hopf method [21], which is valid for large Fermi boundary
(Fermi surface in one dimension). Explicitly, we have

HPC+
c

.= (∆z − ∆c
z)g

−1
+ − τ1g

2
−g−3

+ (∆z − ∆c
z)

2,

HQP
c

.=
∆c

z + ∆z

2

2gs − gt
+ τ1

g2−(∆z − ∆K
z )2

(2gs − gt)3
,

HQF
c

.=
∆c

z − ∆z

2

2gs + gt
+ τ1

[gt∆
c
z − (gs + gt)∆z ]2

(2gs + gt)3
,

HFC−
c

.= π2g−g−2
+ [

√
1 − τ14g−2

− g2
+(∆z + ∆c

z)−1], (6)

where τ1 = 1/(2π2) and ∆K
z = 2gtH

K = gt/g−∆c
z

which corresponds to infinite Fermi boundary. Point Q
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Fig. 3. (A) Comparison of the analytic and the numerical re-
sults for the three critical fields of the SU(4) model with respect
to gt for a fixed value gs = 2.0. The numbers label the state
components as in Figure 2, and Hc3 (phase transition 31→3)
is exact. (B) Phase diagrams for various gt (gs = 2.0). ∆z = 0
corresponds to the SU(4) model. The black dots mark consec-
utive five Hc phase transitions. Such a phenonemon exists for
all 0 < gt < gs, with Hc1-Hc4 being closer for smaller gt.

is determined by ∆Q
z = −2gtH

Q, with HQ .= 2 ln 2/gs +
4π−2 ln2 2×gt

2/g3
s . Near P or F the above analytic results

deviate due to small Fermi boundary. But in this case,
an analysis may be carried out in terms of expansion of
small Fermi boundary. This leads us to HPK

c , H
PC+
c

∼=
∆z

2gs
± (g−/2)

3
2 /(πg

5
2
s )(∆P

z − ∆z)
3
2 . Similarly, near F, we

have HFQ
c , H

FC−
c

∼= −∆z

2gs
± (g+/2)

3
2 /(πg

5
2
s )(∆z − ∆F

z )
3
2 .

For |∆z| < ∆c
z, the GS involves all the four compo-

nents, the magnetic field first brings about a phase transi-
tion from a 4-component liquid to a 3-component liquid at
the phase boundary C+QC −. Here one of the four compo-
nents, which is energetically unfavorable, completely gets
out of the GS, then the corresponding Fermi sea disap-
pears. So the critical field only involves two Fermi bound-
aries B1 and B2. At point C+, the component φ2 is de-
generate with the component φ1 which is energetically the
most favorable, the Fermi boundary B1 lies at infinity. In-
creasing H along C+MNQ drives φ2 away from φ1, so φ2

becomes energetically less favorable in the GS. Therefore
the first Fermi sea shrinks, i.e., B1 decreases from infinity.
Beyond M point, both the increase of H and the decrease
of ∆z make φ3 sink below the φ2 which is rising, the en-
ergy difference between φ3 and φ1 begins to dominate over
B1. As φ3 is drawing near φ1, the first Fermi sea becomes
broadened again with an increase of B1. After point N, φ3

sinks beyond φ1 to be the lowest state, φ1 becomes less
favorable in the GS. The first Fermi sea shrinks again,
B1 begins to decrease along NQ from the infinity at N. A
similar analysis is applicable to B2, B2 rises from zero at
C+ to infinity at M and decreases along MNQ to zero at

Q. In the respective sections of C+MNQ the critical fields
take the form

HC+MNQ
c

.= H+
∞ + H

C+MNQ
B2

+ wH
C+MNQ
B1

MC+= H+
∞ + τ2∆

2
a,3/g+ + wτ2(g−a0 − gt∆a,3)2/g3

+

MN= H+
∞ + τ2[(g−a0 + gs∆a,3)2 + w(g−a0 − gt∆a,3)2]/g3

+

NQ
= H+

∞ + τ2(g−a0 + gs∆a,3)2/g3
+ + wτ2∆

2
a,3/g+, (7)

where H+∞ = ∆a,1/g+, ∆a,m = a0 − m∆z

2 , a0 =
√

3
2 π −

3
2 ln 3, τ2 = 3

16π2 , and w = 2/3. In each case, the first
term comes from infinite B1 and B2, the second term is
correction from finite but large B2, and the third term
is the leading correction from the larger B1. For C+MN
near point M the B2 and B1 terms need to be exchanged
since B2 becomes larger. Along NQ B1 is always larger
than B2. The location of B1 = B2 in C+MN may be
estimated by HB1 = HB2 , which gives ∆z = 2a0(2gs −
gt)/(3gs) for C+M and ∆z = 2

3a0 for MN. This coincides
well with numerics, e.g., for MC+ and gs = 2.0, gt = 1.0,
the analytic result is ∆z = 1.073 whereas the numerical
one is 1.042.

Similarly, for C−VQ, the term resulting from the in-
finite Fermi boundaries is H−

∞ = ∆a,−1/g−, the cor-
rection terms are H

V C−
B2

= τ2∆
2
a,−3/g−, H

V C−
B1

=
HV Q

B1
= τ2[g+a0 + gt∆a,−3]2/g3−, and HV Q

B2
= τ2[g+a0 +

gs∆a,−3]2/g3
−, respectively. These expressions are not

valid for gs ∼ gt due to small Fermi boundaries.
When the system is fully-polarized, only φ3 exists in

the GS, while the other components are all gapful, with a
gap ∆ = min{Ei − 4−E3 | i = 1, 2, 4}. This gap is closed
if H < Hf , with the fully-polarized critical point

Hf = max
{
(∆z/2 + 4) g−1

t , 4g−1
+

}
. (8)

This expression is exact and valid for all ∆z. When ∆z ≤
∆F

z = −8gs/g+, the strong negative anisotropy makes φ1

and φ2 too far away from φ4. Before the field brings them
close enough to get involved in the GS, the component φ4

has been all pumped out by the field from the GS at criti-
cal point Hf = 4/g+. For all ∆z ≤ ∆F

z , the magnetization
is the same as shown by curve a in Figure 1A.

The analytic results are compared with the numerics
in Figure 2, with very satisfactory accuracy.

5 Five consecutive Hc phase transitions

The competition of anisotropy ∆z and the external field
H also leads to an unusual magnetic phenomenon. For
some fixed values of ∆z, gs and gt, the system under-
goes five consecutive quantum phase transitions when
H varies, though the 4-component model usually has at
most three consecutive phase transitions. A strong nega-
tive anisotropy ∆z makes φ4 energetically quite favorable.
The field H expels φ2 first from the 4-component GS.
However, before H overwhelms the influence of ∆z on φ4,
further increase of H will make φ2 closer to φ4 and draw
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it back into the GS. This process brings about the first
two phase transitions. Then H plays a dominant role, it
begins to bring out φ4, φ2 and φ1 from the GS one by
one. This results in other three consecutive phase transi-
tions. The variation of the state component numbers in
the GS is: 4→3→4→3→2→1. This five Hc’s case exists
for all 0 < gt < gs and becomes more visible when gt is
larger. One case is marked by black dots in Figure 3B for
gs = 2.0 and gt = 1.8. Another possible case for five Hc

transitions to occur is the GS composed of φ3 and φ4 .
The field brings φ1 into the GS first. As the difference of
gt and gs is getting smaller, φ2 has closer energy to φ1.
Further increase of H brings φ2 into the GS before φ4

completely gets out. The component number changes in
such a way: 2→3→4→3→2→1. This case occurs when the
point Q is below C in Figure 2, approximately requiring
1 > gt/gs > 1−2 ln 2g3

t /(π2g3
s). Four consecutive Hc tran-

sitions take place for ∆z = −∆c
z. In Figures 1B and 1C, we

plot the magnetization curves which display five consec-
utive Hc phase transitions. Such interesting phase transi-
tions are more favorable to exist for holes, since holes have
negative ∆z as we mentioned below the Hamiltonian (1).

6 The SU(4) model

If we set the anisotropy parameter ∆z to be zero, the
model reduces to the SU(4) model with different Landé g
factors in the spin and orbital sectors. In this special case,
the above results for the critical fields give rise to

H
SU(4)
c1

.= a0g
−1
+ + τ2a

2
0(2gs − gt)2g−3

+ + wτ2a
2
0g

−1
+ ,

H
SU(4)
c2

.= ∆c
z (2gs − gt)−1 + τ1(gt∆

c
z)

2(2gs − gt)−3,

H
SU(4)
c3 = 4g−1

t . (9)

We compare the above analytic results with TBA numer-
ical ones in Figure 3A, which shows an excellent accu-
racy for most values of gt. Take gs = 2.0 and gt = 1.0
as an example, the analytic result for H

SU(4)
c1 and H

SU(4)
c2

are respectively 0.3697 and 0.9386 when TBA numerics
gives 0.3695 and 0.9415 (also for comparison, 200 sites re-
sults [10]: 0.31, 0.93), the discrepancies are respectively
only 0.05% and 0.3%. The analytic expression for H

SU(4)
c3

is exact. The magnetization of the SU(4) model is shown
in Figure 1A, which also coincides with the numerical re-
sult for 200 sites [10].

7 Conclusions and summary

Based on the thermodynamical Bethe ansatz, we have
studied non-pertubatively the quantum phase transitions
of a spin-orbital chain, in the presence of an SU(2)⊗SU(2)
same-site anisotropy ∆z and different g factors for spin
and orbital sectors. Various phase diagrams for different
values of ∆z and different g factors are systematically
presented both numerically and analytically. Magneti-
zation plateau invoked by the different g factors of the spin

and orbital is found for sufficiently large anisotropy ∆z ,
the critical fields of the plateau as well as the plateau-
existence conditions are obtained exactly and the critical
behavior is analyzed. Interestingly for some values of ∆z

and the g factors, the four-component system undergoes
five consecutive quantum phase transitions when the mag-
netic field varies. Especially, we get very accurate expres-
sions for the critical fields the SU(4) model.
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